Possible AP MC for Test

9. If $f(x) = \ln(x + 4 + e^{-3x})$, then f'(0) is

A) A)
$$\frac{-2}{5}$$
 B) $\frac{2}{5}$ C) $\frac{1}{4}$ D) $\frac{2}{5}$ E) nonexistent

1. If
$$y = \sin(3x)$$
, then $\frac{dy}{dx} =$

A)
$$-3\cos(3x)$$
 B) $-\cos(3x)$ C) $\frac{-1}{3}\cos 3x$ D) $\cos(3x)$ E) $3\cos(3x)$

15. If $f(x) = (\ln x)^2$ then, $f''(\sqrt{e}) =$

A)
$$\frac{1}{\epsilon}$$

B)
$$\frac{2}{e}$$

C)
$$\frac{1}{2\sqrt{e}}$$

A)
$$\frac{1}{e}$$
 B) $\frac{2}{e}$ C) $\frac{1}{2\sqrt{e}}$ D) $\frac{1}{\sqrt{e}}$ E) $\frac{2}{\sqrt{e}}$

$$\equiv$$
) $\frac{2}{\sqrt{e}}$

- Let h be a differentiable function, and let f be the function defined by $f(x) = h(x^2 3)$. Which of the following is equal to f'(2)?

- A) h'(1) B) 4h'(1) C) 4h'(2) D) h'(4) E) 4h'(4)

X	f(x)	g(x)	f'(x)	g'(x)
-1	-5	1	3	0
0	-2	0	1	1
1	0	-3	0	.5
2	5	-1	5	2

The table above gives the values of the differentiable functions f and g and of their derivatives f' and g', at selected values of x. If h(x) = f(g(x)), what is the slope of the graph of h at x = 2?

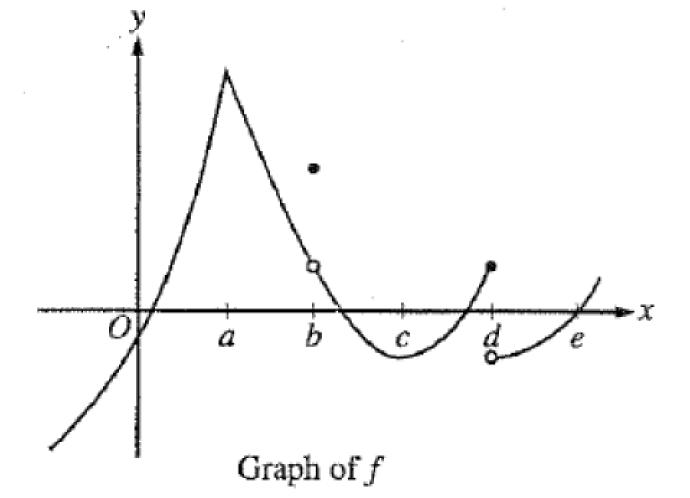
A) -10

B) -6

C) 5

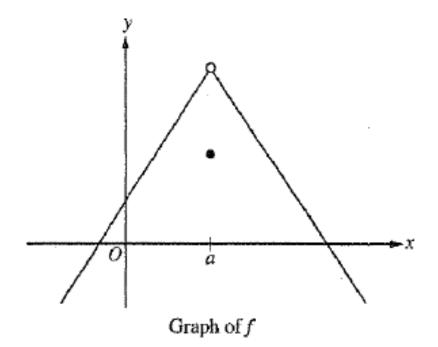
D) 6

E) 10


X	f(x)	f'(x)	g(x)	g'(x)
-1	6	5	3	-2
1	3	-3	-1	2
3	1	-2	2	3

79. The table above gives values of f(x), f'(x), g(x), and g'(x) at selected values of x. If h(x) = f(g(x)), then h'(1) =

A) 5 B) 6 C) 9 D) 10 E) 12



- The function f is defined on the closed interval [-5, 4]. The graph of f consists of three line segments and is shown in the figure above.
- The function p is defined by $p(x) = f(x^2 x)$. Find the slope of the line tangent to the graph of p at the point where x = 2.

13. The graph of a function f is shown above. At which value of x is f continuous, but not differentiable?

A) a B) b C) c D) d E) e

76. The graph of the function f is shown above. Which of the following statements must not be true.

- A) f(a) exists
- B) f(x) is defined for $0 \le x \le a$
- C) f is not continuous at x = a
- D) $\lim_{x \to \infty} f(x)$ exists
- E) $\lim_{x \to a} f'(x)$ exists

Let f be a differentiable function such that f(2) = 5, f(6) = -3, f'(2) = 7 and f'(6) = -9. The function g is differentiable and $g(x) = f^{-1}(x)$ (x) for all x.

What is the value of g'(-3)?